Polyakov-loop potential from functional methods

Jan Lücker

Collaborators: Christian S. Fischer, Leonard Fister (Talk on Tuesday), Tina K. Herbst (Talk on Wednesday), Jan M. Pawlowski (Talk on Tuesday)

Uni Heidelberg

September, 2014

Layout

2 From DSE: $N_f = 2 + 1$ QCD

- 2 From DSE: $N_f = 2 + 1$ QCD
- Isom DSE: Heavy quarks
- 4 From FRG: Application in PQM model

The Polyakov-loop potential

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

- Effective glue sector \rightarrow used in effective models
- Order parameter for confinement (center symmetry)

With functional methods

- Study confinement from QCD degrees of freedom
- Providing input for effective models

Background-field potential

$$\mathcal{L} = \bar{\psi} \left(\partial_0 + i g A_0 + i g \bar{A}_0 - \mu \right) \gamma_0 \psi + \dots$$

Constant background field Ā

 \Rightarrow potential $V(\bar{A})$

$$L[A_0] = \frac{1}{N_c} \operatorname{Tr}_c \left[\mathcal{P} e^{i g \int_0^\beta dx_0 A_0(x_0, \vec{x})} \right]$$

Connecting b.f. and Polyakov loop

$$\begin{split} \mathcal{L}[\bar{A}_0] \geq \langle \mathcal{L}[A_0] \rangle & \text{and} \quad \langle \mathcal{L}[A_0] \rangle = 0 \to \mathcal{L}[\bar{A}_0] = 0 \,, \\ & \mathcal{V}(\bar{A}) = \mathcal{V}(\mathcal{L}[\bar{A}]) \end{split}$$

- $\langle L[A_0] \rangle$ measured on the lattice
- $L[\bar{A_0}]$ used here, in effective models

Obtaining the potential

From the FRG

$$\partial_t \Gamma_k[\bar{A}] = \frac{1}{2} \left(\begin{array}{c} & & \\ &$$

One-loop exact

From the DSE

- Gives V'
- Neglect two-loop terms

See: Fister, Pawlowski, PRD88, arXiv:1301.4163

Propagators

Ghost and gluon

- Quenched k-dependent props by Leo Fister *Fister, Pawlowski, arXiv:1112:5440*
- Quenched gluon as input, unquenching via DSE

Propagators

Ghost and gluon

- Quenched *k*-dependent props by Leo Fister *Fister, Pawlowski, arXiv:1112:5440*
- Quenched gluon as input, unquenching via DSE

- 2 From DSE: $N_f = 2 + 1$ QCD
 - 3 From DSE: Heavy quarks
 - 4 From FRG: Application in PQM model

Full physical QCD (from DSE)

Potential at $\mu = 0$

Fischer, Fister, JL, Pawlowski, PLB732, arXiv:1306:6022

$$\bar{A}_0 = 2\pi T \varphi_3 \frac{\lambda_3}{2}$$

Full physical QCD (from DSE)

Full physical QCD (from DSE)

Fischer, Fister, JL, Pawlowski, PLB732, arXiv:1306.6022 See also: Fischer, JL, Welzbacher PRD90, arXiv:1405.4762 for $N_f = 4$

Columbia plot

de Forcrand, Philipsen, PRL105, arXiv:1004.3144

- Upper-right hand corner
- 1^{st} order area bounded by critical quark mass m_c

Finding m_c at $\mu \ge 0$

Potential at T_c

- Number of minima \rightarrow order of phase transition

Finding m_c at imaginary μ

$$\bar{A}_0 = 2\pi T \left(\varphi_3 \frac{\lambda_3}{2} + \varphi_8 \frac{\lambda_8}{2} \right)$$

- Potential of φ_3 , $\varphi_8 \Rightarrow$ complex Polyakov loop
- Roberge-Weiss symmetry realized

m_c for all μ^2

Fischer, JL, Pawlowski in preparation

- From Roberge-Weiss critical surface up to all real chemical potentials
- Good agreement with tricritical scaling
- Agreement with lattice Fromm et al, JHEP 1201, arXiv:1111.4953

m_c for all μ^2

3D Columbia plot

Fischer, JL, Pawlowski in preparation

- 2 From DSE: $N_f = 2 + 1$ QCD
- Isom DSE: Heavy quarks
- From FRG: Application in PQM model

Potential for models

Model ansätze

- Constructed along symmetries
- Constrains from $\langle L[A] \rangle$, thermodynamics in YM
- ullet \Rightarrow low temperatures not constrained
- \Rightarrow no unquenching effects included, no finite μ

Calculate from FRG

Preliminary!

Potential for models

• Polynomial potential by Ratti, Weise, PRD D70, hep-ph/0406159

Potential for models

• Modified polynomial potential by Haas, Stiele, Braun, Pawlowski, PRD87, arXiv:1302.1993

$N_f = 2$ PQM results

Introduction

- 2 From DSE: $N_f = 2 + 1$ QCD
- Isom DSE: Heavy quarks
- 4 From FRG: Application in PQM model

- Polyakov-loop potential accessible from functional methods
- Phase diagram with physical quark masses
- Heavy quark limit \rightarrow Columbia plot
- Application in effective models
- $\Rightarrow \mu$ -dependent potential

- Polyakov-loop potential accessible from functional methods
- Phase diagram with physical quark masses
- Heavy quark limit \rightarrow Columbia plot
- Application in effective models
- $\Rightarrow \mu$ -dependent potential

Thank you for your attention!